Learning to Control in Operational Space
نویسندگان
چکیده
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational-space control. However, while this framework is of essential importance for robotics and well understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in the face of modeling errors, which are inevitable in complex robots (e.g. humanoid robots). In this paper, we suggest a learning approach for operational-space control as a direct inverse model learning problem. A first important insight for this paper is that a physically correct solution to the inverse problem with redundant degrees of freedom does exist when learning of the inverse map is performed in a suitable piecewise linear way. The second crucial component of our work is based on the insight that many operational-space controllers can be understood in terms of a constrained optimal control problem. The cost function associated with this optimal control problem allows us to formulate a learning algorithm that automatically synthesizes a globally consistent desired resolution of redundancy while learning the operational-space controller. From the machine learning point of view, this learning problem corresponds to a reinforcement learning problem that maximizes an immediate reward. We employ an expectation-maximization policy search algorithm in order to solve this problem. Evaluations on a three degrees-of-freedom robot arm are used to illustrate the suggested approach. The application to a physically realistic simulator The International Journal of Robotics Research Vol. 27, No. 2, February 2008, pp. 197–212 DOI: 10.1177/0278364907087548 c SAGE Publications 2008 Los Angeles, London, New Delhi and Singapore Figures 1, 2, 4–8 appear in color online: http://ijr.sagepub.com of the anthropomorphic SARCOS Master arm demonstrates feasibility for complex high degree-of-freedom robots. We also show that the proposed method works in the setting of learning resolved motion rate control on a real, physical Mitsubishi PA-10 medical robotics arm. KEY WORDS—operational space control, robot learning, reinforcement learning, reward-weighted regression
منابع مشابه
Learning Operational Space Control
While operational space control is of essential importance for robotics and well-understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in face of modeling errors, which are inevitable in complex robots, e.g., humanoid robots. In such cases, learning control methods can offer an interesting alternative to analytical control algorithms. However, the...
متن کاملJan Peters and Stefan Schaal Learning to Control in Operational Space
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational-space control. However, while this framework is of essential importance for robotics and well understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in the face of modeling errors, which are inevitable in complex robots (e.g. humanoid robot...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملJan Peters and Stefan Schaal
One of the most general frameworks for phrasing control problems for complex, redundant robots is operational-space control. However, while this framework is of essential importance for robotics and well understood from an analytical point of view, it can be prohibitively hard to achieve accurate control in the face of modeling errors, which are inevitable in complex robots (e.g. humanoid robot...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 27 شماره
صفحات -
تاریخ انتشار 2008